
QuickTime for Java Overview
Session 408

QuickTime for Java Overview

Anant Sonone and Michael Hopkins
QTJava Engineering

QuickTime and Java
•QuickTime

• Mature, cross-platform, flexible media
architecture

• Rich set of services supporting industry-
standard media
• Dynamic media, still images, virtual reality

•Java
• Full-featured modern object-oriented language

• Cross-platform deployment of applications
and applets

QuickTime for Java
•QTJava is a cross-platform Java class library
accessing the native QuickTime media services

• Presents QuickTime “C” API as a set of
object-oriented Java classes in logical
packages

• Provides abstracted framework of media
services allowing common tasks to be
done more easily

QuickTimeQuickTime

Operating SystemOperating System

JavaJava

QuickTime for JavaQuickTime for Java

QTJava Architecture
•QuickTime for Java relies on core services from
Java, QuickTime, and the Operating System

QTJava Supported Platforms
•Mac OS—MRJ 2.1 and above (JDK 1.1.8)
•Windows—Sun-compatible JRE 1.1 and above
•Mac OS X—J2SE™

QTJava in QuickTime 6
•QuickTime for Java 6 release

• QuickTime 6 API feature support
• Support for MPEG-4
• Support for new Idle Manager

• Complete coverage of QuickTime 4 and 5 API
• Additional functionality and services
• JDK 1.4 support (for Windows)

New QuickTime 6 Features

Introduction to MPEG-4

What Is MPEG-4?
•Based on the flexible component-based
file format of QuickTime

•Scaleable quality based on needs of client
• Low bandwidth for internet delivery
• Near television quality for DSL and
cable modems

•Provides support for audio and video, as
well as MIDI, music, text to speech, and
other technologies

MPEG-4 Architecture

Decoders

Video

Local or

Network

Local or

Network

MP4 FileMP4 File

Terminal

or Client

Terminal

or Client

SceneScene

Stream Manager

Audio Audio

Video Area

General

Audio

AAC and

TwinVQ

Speech,

 Celp, and

HVXC

Music

 HILN

MIDI

Structured

Audio

Text to

Speech

AudioVisual

MP4 File

Format

Scene
Insert-

Object
MPEGJ

DRM

(IPMP)

Object Descriptor

(Stream Management)

Face/Body

Animation
Still

Scene Description

Scene Animation

Delivery Streams (Local or Over Network)

QuickTime 6 MPEG-4
Video Support

•MPEG-4 movies stored in .mp4 files
•New video codec for video compression

• ISMA compliant
• Conforms to Profile 0 standard
• Low data rate of 64Kbits/second
• Interoperable with other systems

QuickTime 6 MPEG-4
Audio Support

•ISMA profile levels 0 and 1
•AAC
• Provides high-quality, low bit rate audio
• Superior to MPEG-3

•Celp
• Very low bandwidth for voice and telephony
• Language specific

Additional MPEG-4 Features
•Support for native MPEG-4 streaming
•New dialogs for media import and export

Using MPEG-4 Features
in QuickTime for Java

•MPEG-4 support is automatic!
• No API changes
• All applications that use QTJava can
support MPEG-4 without any code
changes once QuickTime 6 is installed

New QuickTime 6 Features

New Idle Manager API

Idle Management and
Tasking in QuickTime

•Applications that use QuickTime must call
routines to yield time to QuickTime

• MCIsPlayerEvent()
• MCIdle()
• MoviesTask()
• TaskMovie()

•These routines may be called implicitly by QTJava

Idle Management and
Tasking Inefficiencies

•Difficult to determine how often QuickTime
should be called

• Movies may contain wired sprites that run
even when movie is stopped

•Calling at periodic intervals can be wasteful
• Often QuickTime doesn’t need to be called
so cycles are wasted

New Idle Management API
•Requesting idle interval

int delay = Movie.getTimeUntilNextTask (scale);

•Setting the idle interval
myMovie.taskAll(delay);

•Setting up a callback
• Implement NextTaskNeededSooner interface
and override execute method:

public int execute() { … }

New Idle Management
API Callback

•Installing a callback:
Movie.setNextTaskNeededSoonerCallback (myCallback, …)

•When QuickTime needs time, it will call the
execute method of your callback class

•Removing a callback:
Movie.removeNextTaskNeededSoonerCallback (myCallback, …)

Additional QuickTime 6
Features in QTJava

•Support for Flash 5
• Expanded ActionScript capabilities
• HTML text rendering
• XML data exchange

•Support for VBR Sound Compression

New QuickTime 6 Features

Using QTJava With Swing

QTJava 6: Using QTJava
With Swing
•QTCanvas is heavyweight, making use in a swing
application problematic

QTJava 6: Using QTJ With Swing
•Introduced new class—JQTCanvas

• Lightweight
• Provides most of the functionality
of QTCanvas

• Hardware accelerated on Mac OS X
• Easy to use

JQTCanvas Limitations
•Similar to Compositor

• Lower frame rate than QTCanvas
• Cannot be used to display movie controllers
• Time-based clients must implement
DrawingNotifier interface

• SWCompositor
• MoviePresenter
• QTEffectPresenter

Using JQTCanvas
•Creating a JQTCanvas:

JQTCanvas theCanvas = new JQTCanvas
(QTCanvas.kInitialSizeNoResize, …);

•Setting the client:
mPlayer = new MoviePlayer(mov);
theCanvas.setClient(mPlayer, true);

•Adding the JQTCanvas to a Frame:
theJFrame.getContentPane().add (theCanvas);

•Turning on Hardware Acceleration:
JQTCanvas.useMacOSXAcceleration = true;

Demo
Using JQTCanvas

QTJava Current Features
•Enhancements in QTJava 6

• JDK 1.4 support (Windows only)
• No API level changes, transparent to the user

• New MovieMediaHandler API support
• QTVR ViewParameter get/set calls
• Public constructor for SGOutput
• Allows filenames with accented characters

QTJava Current Features
•Bug fixes

• Mac OS X dialog enhancements
• Sequence grabber fixes

• SGDataProc—The sequence grabber calls your
data function whenever any channel component
writes data to the destination movie
mGrabber.setDataProc(new MyProc());
class MyProc implements SGDataProc {
 public int execute (…) throws QTException {
 //where you wrote the data or zero if you didn’t

 write data
 return 0; }}

Using the Presentation API
•New API with QT 5 (Enhanced in QT 6)
•Broadcast from a sequence grabber source

• Audio from a device such as a microphone,
CD, or DV Audio source

• Video from a device such as a DV camera,
or USB camera (CritterCam)

•Broadcast can be unicast or multicast
•Broadcast user-configurable using a
settings dialog

Efficient Programming

Anant Sonone
QTJava Engineering

Movie Controllers
•Movie controllers present the user with
an interface for controlling the movie

• Stop/start playback
• Jump within the timebase
• Control sound volume

•Typically appears directly
beneath the movie content

Detached Controller

When to Use a
Detached Controller

•Treats movie and controller as separate
graphics entities

•Allows slaving of multiple movies to a
single controller

•Place movies in a Swing component
•Enables applications to use custom movie
controllers

Detaching a Controller
in QTJava

•Creating the canvas:
QTCanvas controllerCanvas = new QTCanvas();

•Creating the movie controller:
MovieController controller = new MovieController

(movie, mcScaleMovieToFit);

•Detaching the controller:
controller.setAttached(false);

•Creating the canvas:
QTCanvas controllerCanvas = new QTCanvas();

•Creating the movie controller:
MovieController controller = new MovieController

(movie, mcScaleMovieToFit);

•Detaching the controller:
controller.setAttached(false);

Using the Detached
Controller (Cont.)

•Creating a QTPlayer for the controller:
QTPlayer qtPlayer = new QTPlayer(controller);

•Setting the client:
controllerCanvas.setClient(qtPlayer, true);

•Setting up the movie:
MoviePlayer moviePlayer = new MoviePlayer(movie);

movieCanvas.setClient(moviePlayer, true);

Demo
Using a Detached Controller

Efficient Programming

Playing a Sound File

Playing a Sound File Efficiently
•Previous examples and documentation
recommended using QTDrawable objects

•This methodology had many drawbacks:
• Required use of a QTPlayer object
• Used explicit calls to task()
• Graphical artifacts on Mac OS X

Playing a Sound File
Efficiently (Cont.)
•Open sound file as a movie:

Movie movie = Movie.fromFile (fileIn);

•Use the TaskAllMovies class to task active movies
or Timebases:

TaskAllMovies.addMovieAndStart();

•Set the movie rate to 1 for playback and 0 to stop:
movie.setRate(1);

•Remove movie that no longer needs to be tasked:
TaskAllMovies.removeMovie();

Efficient Programming

QTJava Wired Sprite API

What Are Wired Sprite Movies?
•Movies that contain interactive components
•User input is translated into events which can
target the movie, sprite, or track

•Events fire actions which modify individual
properties of the target

Wired Sprite Movies
•Interactive movies contain sprite elements
•Sprite is typically an image that has properties that
can be modified to achieve animation or interactivity

•Sprite Track defined by one or more key frame
samples followed by override samples

• Key frame contains shared image data and initial
properties of the sprites

• Override sample overrides properties of the sprites
• Samples are based on QTAtoms

Challenges of Making
Wired Sprite Movies

•QTAtom architecture is hard to understand
•Native C API is difficult and tedious to use
•Platform dependencies and endian issues
•Major development learning curve
•Third-party authoring tools may be expensive

Advantages of the QTJava
Wired Action API

•Easy-to-use object-oriented API
•Platform independent
•Very low overhead
•Slight learning curve

API Overview
•Creating and modifying wired movies

• First create a new movie file with a single
sprite track

• Make key frame sample containing a sprite
and all of its shared images

• Set the sprite track’s properties
• Create override samples as needed to override
matrix and image index properties of the sprite

• Set actions on the sprites for specific user events

wiredsprites.ActionAtom

wiredsprites.ImageContainer

wiredsprites.SampleFrame

wiredsprites.SpriteAtom

wiredsprites.SpriteTrackAtom

wiredsprites.WiredActionUtils

wiredsprites.WiredSpriteConstants

java.lang.Object

Wired Action Package

API Overview (Cont.)
•Creating new movie file:

Movie mov = Movie.createMovieFile(…);

•Add sprite track to movie and media to track:
Track spriteTrack = mov.addSpriteTrack(…);

SpriteMedia media = new SpriteMedia(spriteTrack, scale);

•Create key frame and add images for sprites:
SampleFrame keyFrame = new SampleFrame();

ImageContainer images =
ImageContainer.makeImageContainer();

for (i=0; i < nImages; i++)

images.addSpriteImage(…);

API Overview (Cont.)
•Create sprites and set their properties:

SpriteAtom sprite = new SpriteAtom(id);

sprite.set<Properties>(…); // location, visibility, etc.

•Create actions and add to sprite:
ActionAtom spriteAction = new ActionAtom ()

spriteAction.set<action>(QTEvent,…);

sprite.setAction (spriteAction);

keyFrame.addSpriteAtom (sprite);

•Create override frame and set override properties
•Add key and override frame to media

API Overview (Cont.)
•Insert media into track:

spriteTrack.insertMedia(….)

•Create sprite track atom and set properties:
SpriteTrackAtom trackProperties = new

SpriteTrackAtom (…);

•Add sprite track properties to the media:
WiredActionUtils.setTrackProperties (media,

trackProperties);

•Add movie resources to the movie

Demo
Exercising the Wired Action APIs

Efficient Programming

Installing QuickTime for Java

QTJava Standard Installation
Procedure

•Mac OS X—preinstalled!
•Mac OS 9

• Select Custom Install
•Windows

• Install a Sun-compatible Java VM
• Install QuickTime

• Select Custom Install

QTJava Windows
Custom Installation

•Licensing the Installer
http://developer.apple.com/mkt/swl/
agreements.html#QuickTime

• Developer is responsible for insuring
installation is successful

•Writing a custom installer
• License individual pieces
• Modify the ini file

Who to Contact
General Developer Support
Public mailing list for QTJava Developers
lists.apple.com

For General Developer Information
QTJava SDK (Sample Code, Documentation)
developer.apple.com/quicktime/qtjava

For Seeding Enrollment
Must be Registered Apple Developer
qtjava@apple.com

http://developer.apple.com/wwdc2002/urls.html

Roadmap
Room J1
NOW!

Room J1
NOW!

FF010 QuickTime:
Let your voice be heard!

Room A2
Fri., 2:00pm
Room A2

Fri., 2:00pm
606 QuickTime for the Web:
Learn about web deployment and
groovy Flash media

Room A2
Fri., 3:30pm
Room A2

Fri., 3:30pm
607 QuickTime and MPEG-4:
Technical overview of this revolutionary
new media format

Q&A

Tom Maremaa
Apple TechPubs

maremaa@apple.com

http://developer.apple.com/wwdc2002/urls.html

© 2001 and TM Apple Computer, Inc. All rights reserved.

© 2001 and TM Apple Computer, Inc. All rights reserved.

© 2001 and TM Apple Computer, Inc. All rights reserved.

